Single Photon Simulations

Joe Osborn

Overview

- Last presentation: March 7
- Showed some first look at single photon gun simulations
- Today:
 - Switched to 2D SPACAL for photon reconstruction
 - More investigation of low energy cluster garbage

Energy Response

Without angular cut

With angular cut $\Delta \phi < 0.02 \&\& \Delta \eta < 0.02$

- Angular cut doesn't clean up low energy mismatches
- Private discussions with Frantz group confirms they see similar results

2D Angular Histograms: ф

- Reminder: φ shows bimodal structure
- Bimodal behavior basically the same across all φ
- What is this feature...?

2D Angular Histograms: η

- η shows some bimodal structure as well
- Additionally asymmetric about 0
 - From EMCal module tilting?
- Seems that the module boundaries are visible?

EMCal Resolution in Simulation

- Fit energy responses to Gaussians (example below)
- Extract width, plot as a function of E_{truth}
- Constant term looks resonable, sqrt(E) term looks a bit small compared to test beam data

Small Phase Space Photons

- I threw photons in a much smaller phase space to try and observe the nonlinearity effect Jin referred to last week
- Threw in -0.5< η <-0.4, -1.1< φ <-1
- This is an area of the detector that the previous plots showed is pretty normal/uniform
- Look for nonlinearity in $\Delta \phi$ and $\Delta \eta$

Angular Response Fine Binning

Clear nonlinearity in both φ,η

Δφ,Δη Response Shows Nonlinearity

- Nonlinearity shows same structure in η,φ and Δη, Δφ
- Note that this behavior is the same for $e_{reco}/e_{truth} < 0.7$ and $e_{reco}/e_{truth} > 0.7$

Inner HCal + EMCal Correlations

HCal Correlations

- Jin suggested looking at possible correlations with inner HCal
- Is there any tunneling going on through EMCal block boundaries?
- If so energy would be deposited in HCal behind EMCal
- This might indicate why there are so many low energy clusters in the EMCal

Angular Correlations Between HCal/EMCal

What is that feature...? Something from detector?

Must be somehow related to line feature from page 4?

Cluster Energy Correlation

- Seems that the tunneling could be the cause of this
- Lower energy EMCal clusters match with high energy HCal clusters

Cluster Energy Correlation

- To check this, look at energy difference in EMCal vs. reconstruced HCal energy
- Clear correlation
- Energy missed in EMCal is being reconstructed as a cluster in the HCal

Conclusions

- Switched to 2D spacal reconstruction will use this from now on
- Studies of nonlinearity and resolution of EMCal in simulation
- Seems that the low energy EMCal clusters are being reconstructed as high energy HCal clusters
- Clear nonlinearity in η , ϕ for the EMCal reconstruction

Back Up

Truth-Reco Angular Correlations

Truth-Reco Angular Correlations

- I don't see the same clustering behavior that Justin/Abinash see, but this is probably because I don't have the necessary statistics in this set of simulations
- Requires very fine binning in eta and phi, in (basically) one tower